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The distribution of the non-null characteristic roots of
a matrix derived from sample observations taken
from multivariate normal  populations is of
fundamental of importance in multivariate analysis.
The Fisher-Girshick-Shu-Roy distribution  (1939),
which has interested statisticians for more than 6
decades, is revisited. Instead of using K.C.S. Pillai’s
method by neglecting higher order terms of the
cumulative distribution function (CDF) of the largest
root to approximate the percentage points, we simply
keep the whole CDF and apply its natura
nondecreasing property to calculate the exact
probabilities. Atthe duplicated percentage points, we
found our computed percentage points consistent
with the existing tables. However, our tabulations
have greatly extended the existing tables.

INTRODUCTION

We are concerned here with the distribution of the
largest characteristic roots in multivariate analysis,
when there are roots that range from 2 to 6. Fisher-
Girshick-Shu-Roy (1939) discuss this in detail and
present the exact joint probability density function in
general. This well-known distribution depends on
the number of characteristic roots and two parameters
m and n. They are defined differently for various
situations as described by Pillai (1955, 1957). The
upper percentage points of the distribution are
commonly used in three different types of hypothesis
testing in multivariate analysis, namely: i) test of
equality of the variance-covariance matrices of two
p-variate normal populations; ii) test of equality of
the p-dimensional mean vectors for k p-variate
normal populations;, and iii) test of independence
between a pset and a ¢set of variates in a (p+q)-
variate normal population. When the null hypotheses
to be tested are true, all three types of test proposed
above have been shown to depend only on the
characteristic roots of matrices using observed
samples. We could state the problem in the
following manner. Using a random sample from the
multivariate normal population, we could compute
the characteristic roots from a usual sum of product
matrices of this sample. We then compare the largest
characteristic root of the matrices with the percentage
points that we have tabulated in this paper to
determine whether or not to reject the null hypothesis
at a certain probability confidence. For this reason,
the percentage points of the largest characteristic

roots of the distribution have seriously attracted the
attention of mathematical statisticians for more than 6
decades. There are already many published tables
that either focus on upper percentage point
tabulations or chart the various sizes of roots. K.C.S.
Pillai is the most well known contributor in this area.
He gave the general rules for finding the CDF of the
largest root and tabulated upper percentage points of
95 percent and 99 percent for various root sizes.
Other contributors, including D.N. Nanda (1948,
1951), F.G. Foster (1957, 1958), D.H. Rees (1957),
and D.L. Heck (1960), will be discussed in more
detail later. We will also discuss in detail the
algorithm used to create tables for this paper. We
will then compare the K.C.S. PFillai method with ours
and also the advantage in our approach. The
appendix liststhe CDF' sfrom 2 to 6.

CUMULATIVE FUNCTION AND HISTORICAL
WORK

The joint distribution of s non-null characteristic
roots of a matrix in multivariate distribution was
given by Fisher-Girshick-Hsu-Roy (1939) (see the
list of CDF's from 2 to 6 in the appendix). In this
study, we were interested in the distribution of the
largest characteristic root with the given CDF from 2
to 6. Even though we know the form of the joint
density function, it may not be easy to write out the
CDF of the largest characteristic root. There are two
methods to find the CDF more easily. K.C.S. Pillai
1965) suggested that the CDF of the largest
characteristic root could be presented in the
determinantal form of incomplete beta functions. To
overcome the difficulty of numerical integration of
each of the s! multiple integrals when the determinant
is expanded, he suggested an alternative reduction
formula. This formula gives an exact expression for
the CDF of the largest root in terms of incomplete
beta functions or functions of incomplete beta
functions for various values of s. Later, Pilla
(1956b) expanded the CDF by neglecting higher
order terms and tabulated the 95-percent and 99-
percent percentage points. An aternative method
suggested by D.N. Nanda (1948) yielded the same
results. He started with the Vandermonde
determinant and expanded it in minors of a row, then
repeated applied integration by part to find the CDF
of the largest characteristic root. In this paper, we
slightly modified the D.N. Nanda notation and



presented the case with roots ranging from 2 to 6.
Following these CDF's and the algorithm described
later, we could tabul ate the upper percentage points.

It is useful here to review some of the published
tables and see some reasons to extend the tables.
K.C.S. Pillai (1956a, 1957, 1959) published tables
that focus only on two percentage points, i.e., 95
percent and 99 percent for s =2,6, m = 0(1)4, and n
varying from 5 to 1000. Foster and Rees (1957)
tabulated the upper percentage points 80 percent, 85
percent, 90 percent, 95 percent, and 99 percent of the
largest root for =2, m=-0.5, 0(1)9,
n=1(1)19(5)49,59, 79. Foster (1957, 1958) further
extended these tables for values of s=3 and 4. Heck
(1960) has given some charts of upper 95-percent,
97.5-percent, and 99-percent points for s=2(1)5,
m=-0.5, 0(1)10, and n greater than 4.

Without a modern computer, it used to be an
understandably difficulty task to compute the whole
CDF(3.2) at each percentage point. Thisisnot only
tedious but worthless. Therefore, deleting higher
order terms and keeping afew lower order termsto
approximate the roots will form agood and
reasonable method for solving the problem. But this
approach involvesintolerable error at the lower
percentage points, such as 80 percent, 82.5 percent,
85 percent, 87.5 percent, 90 percent, or 92.5 percent.
These percentage points are usually ignored, not
because of lack of use but because of the difficulty of
computation. Traditional methods treat missing
values by interpolation. However, without say 85-
percent or 90-percent points, it is difficult to
interpolate 87.5 percent. In recent years, the
computer has gradually matured in memory, speed,
and flexibility. It has greatly changed the method we
use for analyzing statistics. In thisstudy, we use one
of the most basic properties of the CDF and revisit
this most important distribution. We attempted to
include as many percentage points aswe needed in
one computer run. The upper percentage pointswe
included are 0.80, 0.825, 0.850, 0.875, 0.890, 0.900,
0.910(0.005), and 0.995. Different authors have
selected different m and n parameter values. We
selected these two parametersin such away that all
existed table values will be included. For the
parameter m=0(1)15 and the parameter
n=1(1)20(2)30(5)80(10)150,200(100) 1000, our table
will give usthe exact accuracy percentage points and
probabilities and avoid the interpolation problem.

THE ALGORITHM

In this section, we describe in more detail how we
compute the percentage points. For this study, no
new theory was created. Instead, we applied the
fundamental nondecreasing function property of the
CDF, e, If X, £x,,then f(x,) £ f(x,).
Applying this useful and simple property helps us
find all the needed percentage points. Let us start
with a standard procedure used in computer
algorithms to see how we generate one percentage
point. First, choose one set of m and n values, say

m = 1 and n =2, and a very small x value, say 0 or

0.1*10™* to ensure that there are no missing
percentage points we are interested in that are larger
than this value. Using these selected values,
substitute into the equation (3.2) to compute the
probability cumulate to this selected x value. If the
computed probability equals, say 0.95000325, then
write out this computed probability, m, n, and x
values in a specified file, say f950.dat. Then, loop
the pointer back and add a very small amount on X,

say 0.1%* 10°*, and again compute the probability.
If this time the computed probability is 0.9600125,
then write out this computed probability, m, n, and x
values in a different specified file, say f960.dat.
Since we know that the cumulative function is aways
nondecreasing and continuous, it ensures us that any
probability ranged from 0 to 1 will have a chance to
be reached at least once for some selected x values.
It is possible for several specific x values to round to
the same probability. This means that we could
increase either m or n by a selected value and reset x
to 0 or a small value again to repeat the process of
adding a small amount to x to compute the
corresponding probability. This process should
continue until we fill al m by n tables. Our
experience shows that, for a chosen fixed m and n, as
X increases by the above-stated increment, the
computed probabilities aso increase with multiple
values rounding to the desired probability. The
following simple rule has been adopted to select a
triplet X, m, and n, for a desired probability. Let us

say the desired probability y is P and the estimate
for x to reach this probability y is Xg:
Pr(gs £ X,) = Py- We need to find a
pair sy, X, and x,  suchtha :
Pr(a £x,) <P, < Pr(ds £X,)
We then can conclude by monotonicity that X, in

the interval (Xg,Xp), is the desired estimated
ordinate x and report in the attached table. Inthe



attached table, we have rounded our results to four
decimal accurate places.

SOME CONCLUDING REMARKS

Pillai’s approximation method by neglecting higher
order terms has some limitations. Pillai (1954)
studied these limitations in more detail for the case
s=2,3, and 4. If we define the error of approximation
of the upper percentage points of the distribution as
the difference between the approximate and exact
probabilities, then his comparative study obtained the
following conclusions. i) There is greater agreement
between the probabilities for the approximate and
exact cases in the upper 99-percent pointsthan in the
9%-percent; ii) The difference between the
approximate and exact probabilities in the upper 95-
percent points occurs in the fifth decimal place; that
on rounding gives a difference of only one in the
fourth decimal place; iii) If we fixed the parameter m
as constant, the error of approximation increases
slowly as the other parameter increased; such
increase occurs only in the sixth decimal place or at
most is unity in the fifth decimal place when
rounding.

Flla (1959) aso concluded that the approximate
formula is only appropriate for percentage points 95
percent or higher. It might be adequate for those
percentage points slightly below 95 percent. In
application, it is very clear that lower percentage
points are needed. Using the algorithm suggested in
section 4, we can compute any percentage points.

Since our method used the whole distribution
function and not a truncated distribution, the table
included in this paper is only a small portion of the
table generated by computer. Interested readers may
write to the author for more detailed tabulations.
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Upper percentege points of .900 of theta(p,m,n),
thelargest eigenvaue of |B-theta(W+B)|=0,when s=2

m
n 0 1 2 3 4 5 6 7
1 8464 8968 9221 9374 .9476 .9550 .9605 .9649
2 7307 8058 .8474 .8742 .8928 .9067 .9173 .9258
3 6366 .7244 7768 .8120 .8375 .8568 .8719 .8842
4 5618 .6551 .7138 .7548 .7853 .8090 .8278 .8433
5 5017 5965 .6587 .7035 .7375 .7644 7862 .8042
6 4527 5468 6106 .6577 .6942 .7234 7475 .7676
7 4122 5043 5685 .6169 .6550 .6860 .7117 .7334
8 3782 4677 5315 5805 .6196 .6517 .6787 .7016
9 3493 4359 4989 5479 5875 .6204 .6483 .6721
10 .3244 4080 4698 .5186 .5584 .5918 .6202 .6448
11 3028 .3834 4439 4921 5319 5655 .5943 .6194
12 2839 3616 4206 4681 .5077 5413 5704 .5958
13 2671 3421 3996 4463 4855 5191 5482 5739
14 2523 3245 3805 4264 4651 4985 5276 .5534
15 2390 .3087 .3632 4082 .4464 4794 5085 .5342
16 2270 2943 .3473 3914 4290 4617 4906 .5163
17 2161 2812 3328 .3759 4129 4453 4739 .4995
18 2063 2692 .3194 .3616 .3980 .4299 .4583 .4837

19 1973 2581 .3070 .3483 .3840 .4155 .4436 .4689
20 1890 .2480 2956 .3359 .3711 4021 .4299 .4549
22 1744 2299 2750 3137 3475 3776 4047 4203
24 1619 2142 2571 2941 .3267 .3559 .3823 .4063
26 1510 .2005 .2414 .2769 .3083 .3365 .3622 .3857
28 1416 .1885 2275 .2615 2918 .3191 .3441 .3670
1332 1778 2151 2478 2770 .3034 .3277 .3500
1161 1557 1893 2189 2457 2702 .2927 .3137
1028 1385 .1690 .1961 .2208 .2434 .2645 2841
0923 1248 1526 1776 .2004 2215 .2412 .2596
0837 .1135 .1391 .1623 .1835 .2032 .2216 .2390

S&EERE



KREBowo~v~ourwnr

RO RN

18

Upper percentage points of .900 of theta(p,m,n),

the largest eigenvaue of [B-theta(W+B)|=0,when s=4
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Upper percentage points of .900 of theta(p,m,n),

the largest egenvaue of [B-theta(\W+B)|=0,when s=5
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Upper percentage points of .900 of theta(p,m,n),

thelargest eigenvaue of [B-theta(\W+B)|=0,when s=6
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