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The distribution of the non-null characteristic roots of 
a matrix derived from sample observations taken 
from multivariate normal populations is of 
fundamental of importance in multivariate analysis. 
The Fisher-Girshick-Shu-Roy distribution (1939), 
which has interested statisticians for more than 6 
decades, is revisited.  Instead of using K.C.S. Pillai’s 
method by neglecting higher order terms of the 
cumulative distribution function (CDF) of the largest 
root to approximate the percentage points, we simply 
keep the whole CDF and apply its natural 
nondecreasing property to calculate the exact 
probabilities.  At the duplicated percentage points, we 
found our computed percentage points consistent 
with the existing tables.  However, our tabulations 
have greatly extended the existing tables. 
 
INTRODUCTION 
 
We are concerned here with the distribution of the 
largest characteristic roots in multivariate analysis, 
when there are roots that range from 2 to 6.  Fisher-
Girshick-Shu-Roy (1939) discuss this in detail and 
present the exact joint probability density function in 
general.  This well-known distribution depends on 
the number of characteristic roots and two parameters 
m and n.  They are defined differently for various 
situations as described by Pillai (1955, 1957).  The 
upper percentage points of the distribution are 
commonly used in three different types of hypothesis 
testing in multivariate analysis, namely:  i) test of 
equality of the variance-covariance matrices of two 
p-variate normal populations; ii) test of equality of 
the p-dimensional mean vectors for k p-variate 
normal populations; and iii) test of independence 
between a p-set and a q-set of variates in a (p+q)-
variate normal population.  When the null hypotheses 
to be tested are true, all three types of test proposed 
above have been shown to depend only on the 
characteristic roots of matrices using observed 
samples.  We could state the problem in the 
following manner.  Using a random sample from the 
multivariate normal population, we could compute 
the characteristic roots from a usual sum of product 
matrices of this sample.  We then compare the largest 
characteristic root of the matrices with the percentage 
points that we have tabulated in this paper to 
determine whether or not to reject the null hypothesis 
at a certain probability confidence.  For this reason, 
the percentage points of the largest characteristic 

roots of the distribution have seriously attracted the 
attention of mathematical statisticians for more than 6 
decades.  There are already many published tables 
that either focus on upper percentage point 
tabulations or chart the various sizes of roots.  K.C.S. 
Pillai is the most well known contributor in this area.  
He gave the general rules for finding the CDF of the 
largest root and tabulated upper percentage points of 
95 percent and 99 percent for various root sizes.  
Other contributors, including D.N. Nanda (1948, 
1951), F.G. Foster (1957, 1958), D.H. Rees (1957), 
and D.L. Heck (1960), will be discussed in more 
detail later.  We will also discuss in detail the 
algorithm used to create tables for this paper.  We 
will then compare the K.C.S. Pillai method with ours 
and also the advantage in our approach.  The 
appendix lists the CDF’s from 2 to 6. 

 
CUMULATIVE FUNCTION AND HISTORICAL 
WORK 
 
The joint distribution of s non-null characteristic 
roots of a matrix in multivariate distribution was 
given by Fisher-Girshick-Hsu-Roy (1939) (see the 
list of CDF’s from 2 to 6 in the appendix).  In this 
study, we were interested in the distribution of the 
largest characteristic root with the given CDF from 2 
to 6.  Even though we know the form of the joint 
density function, it may not be easy to write out the 
CDF of the largest characteristic root.  There are two 
methods to find the CDF more easily.  K.C.S. Pillai 
1965) suggested that the CDF of the largest 
characteristic root could be presented in the 
determinantal form of incomplete beta functions.  To 
overcome the difficulty of numerical integration of 
each of the s! multiple integrals when the determinant 
is expanded, he suggested an alternative reduction 
formula.  This formula gives an exact expression for 
the CDF of the largest root in terms of incomplete 
beta functions or functions of incomplete beta 
functions for various values of s.  Later, Pillai 
(1956b) expanded the CDF by neglecting higher 
order terms and tabulated the 95-percent and 99-
percent percentage points.  An alternative method 
suggested by D.N. Nanda (1948) yielded the same 
results.  He started with the Vandermonde 
determinant and expanded it in minors of a row, then 
repeated applied integration by part to find the CDF 
of the largest characteristic root.  In this paper, we 
slightly modified the D.N. Nanda notation and 



 

 

 

 

presented the case with roots ranging from 2 to 6.  
Following these CDF’s and the algorithm described 
later, we could tabulate the upper percentage points. 
 
It is useful here to review some of the published 
tables and see some reasons to extend the tables.  
K.C.S. Pillai (1956a, 1957, 1959) published tables 
that focus only on two percentage points, i.e., 95 
percent and 99 percent for s =2,6, m = 0(1)4, and n 
varying from 5 to 1000.  Foster and Rees (1957) 
tabulated the upper percentage points 80 percent, 85 
percent, 90 percent, 95 percent, and 99 percent of the 
largest root for s=2, m=-0.5, 0(1)9, 
n=1(1)19(5)49,59, 79.  Foster (1957, 1958) further 
extended these tables for values of s=3 and 4.  Heck 
(1960) has given some charts of upper 95-percent, 
97.5-percent, and 99-percent points for s=2(1)5,  
m=-0.5, 0(1)10, and n greater than 4. 
 
Without a modern computer, it used to be an 
understandably difficulty task to compute the whole 
CDF(3.2) at each percentage point.  This is not only 
tedious but worthless.  Therefore, deleting higher 
order terms and keeping a few lower order terms to 
approximate the roots will form a good and 
reasonable method for solving the problem.  But this 
approach involves intolerable error at the lower 
percentage points, such as 80 percent, 82.5 percent, 
85 percent, 87.5 percent, 90 percent, or 92.5 percent.  
These percentage points are usually ignored, not 
because of lack of use but because of the difficulty of 
computation.  Traditional methods treat missing 
values by interpolation.  However, without say 85-
percent or 90-percent points, it is difficult to 
interpolate 87.5 percent.  In recent years, the 
computer has gradually matured in memory, speed, 
and flexibility.  It has greatly changed the method we 
use for analyzing statistics.  In this study, we use one 
of the most basic properties of the CDF and revisit 
this most important distribution.  We attempted to 
include as many percentage points as we needed in 
one computer run.  The upper percentage points we 
included are 0.80, 0.825, 0.850, 0.875, 0.890, 0.900, 
0.910(0.005), and 0.995.  Different authors have 
selected different m and n parameter values.  We 
selected these two parameters in such a way that all 
existed table values will be included.  For the 
parameter m=0(1)15 and the parameter 
n=1(1)20(2)30(5)80(10)150,200(100)1000, our table 
will give us the exact accuracy percentage points and 
probabilities and avoid the interpolation problem.  
 
THE ALGORITHM 
 

In this section, we describe in more detail how we 
compute the percentage points.  For this study, no 
new theory was created.  Instead, we applied the 
fundamental nondecreasing function property of the 
CDF, i.e., )x()f(x then , x 2121 fxif ≤≤ . 
Applying this useful and simple property helps us 
find all the needed percentage points.  Let us start 
with a standard procedure used in computer 
algorithms to see how we generate one percentage 
point.  First, choose one set of m and n values, say  
m = 1 and n =2, and a very small x value, say 0 or 

410*1.0 −  to ensure that there are no missing 
percentage points we are interested in that are larger 
than this value.  Using these selected values, 
substitute into the equation (3.2) to compute the 
probability cumulate to this selected x value.  If the 
computed probability equals, say 0.95000325, then 
write out this computed probability, m, n, and x 
values in a specified file, say f950.dat.  Then, loop 
the pointer back and add a very small amount on x, 

say 410*1.0 − , and again compute the probability.  
If this time the computed probability is 0.9600125, 
then write out this computed probability, m, n, and x 
values in a different specified file, say f960.dat.  
Since we know that the cumulative function is always 
nondecreasing and continuous, it ensures us that any 
probability ranged from 0 to 1 will have a chance to 
be reached at least once for some selected x values.  
It is possible for several specific x values to round to 
the same probability.  This means that we could 
increase either m or n by a selected value and reset x 
to 0 or a small value again to repeat the process of 
adding a small amount to x to compute the 
corresponding probability.  This process should 
continue until we fill all m by n tables.  Our 
experience shows that, for a chosen fixed m and n, as 
x increases by the above-stated increment, the 
computed probabilities also increase with multiple 
values rounding to the desired probability.  The 
following simple rule has been adopted to select a 
triplet x, m, and n, for a desired probability.  Let us 

say the desired probability y is 0p  and the estimate 

for x to reach this probability y is 0 x : 
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attached table, we have rounded our results to four 
decimal accurate places. 
 
SOME CONCLUDING REMARKS 

 
Pillai’s approximation method by neglecting higher 
order terms has some limitations.  Pillai (1954) 
studied these limitations in more detail for the case  
s =2,3, and 4.  If we define the error of approximation 
of the upper percentage points of the distribution as 
the difference between the approximate and exact 
probabilities, then his comparative study obtained the 
following conclusions:  i) There is greater agreement 
between the probabilities for the approximate and 
exact cases in the upper 99-percent points than in the 
95-percent; ii) The difference between the 
approximate and exact probabilities in the upper 95-
percent points occurs in the fifth decimal place; that 
on rounding gives a difference of only one in the 
fourth decimal place; iii) If we fixed the parameter m 
as constant, the error of approximation increases 
slowly as the other parameter increased; such 
increase occurs only in the sixth decimal place or at 
most is unity in the fifth decimal place when 
rounding. 
 
Pillai (1959) also concluded that the approximate 
formula is only appropriate for percentage points 95 
percent or higher.  It might be adequate for those 
percentage points slightly below 95 percent.  In 
application, it is very clear that lower percentage 
points are needed.  Using the algorithm suggested in 
section 4, we can compute any percentage points.  
Since our method used the whole distribution 
function and not a truncated distribution, the table 
included in this paper is only a small portion of the 
table generated by computer.  Interested readers may 
write to the author for more detailed tabulations. 
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Upper percentage points of  .900 of theta(p,m,n), 
the largest eigenvalue of |B-theta(W+B)|=0,when s=2 

 
m 
 

                                           n             0          1          2          3          4          5          6          7 
 

1      .8464   .8968   .9221   .9374   .9476   .9550   .9605   .9649 
2      .7307   .8058   .8474   .8742   .8928   .9067   .9173   .9258 
3      .6366   .7244   .7768   .8120   .8375   .8568   .8719   .8842 
4      .5618   .6551   .7138   .7548   .7853   .8090   .8278   .8433 
5      .5017   .5965   .6587   .7035   .7375   .7644   .7862   .8042 
6      .4527   .5468   .6106   .6577   .6942   .7234   .7475   .7676 
7      .4122   .5043   .5685   .6169   .6550   .6860   .7117   .7334 
8      .3782   .4677   .5315   .5805   .6196   .6517   .6787   .7016 
9      .3493   .4359   .4989   .5479   .5875   .6204   .6483   .6721 
10      .3244   .4080   .4698   .5186   .5584   .5918   .6202   .6448 
11      .3028   .3834   .4439   .4921   .5319   .5655   .5943   .6194 
12      .2839   .3616   .4206   .4681   .5077   .5413   .5704   .5958 
13      .2671   .3421   .3996   .4463   .4855   .5191   .5482   .5739 
14      .2523   .3245   .3805   .4264   .4651   .4985   .5276   .5534 
15      .2390   .3087   .3632   .4082   .4464   .4794   .5085   .5342 
16      .2270   .2943   .3473   .3914   .4290   .4617   .4906   .5163 
17      .2161   .2812   .3328   .3759   .4129   .4453   .4739   .4995 
18      .2063   .2692   .3194   .3616   .3980   .4299   .4583   .4837 
19      .1973   .2581   .3070   .3483   .3840   .4155   .4436   .4689 
20      .1890   .2480   .2956   .3359   .3711   .4021   .4299   .4549 
22      .1744   .2299   .2750   .3137   .3475   .3776   .4047   .4293 
24      .1619   .2142   .2571   .2941   .3267   .3559   .3823   .4063 
26      .1510   .2005   .2414   .2769   .3083   .3365   .3622   .3857 
28      .1416   .1885   .2275   .2615   .2918   .3191   .3441   .3670 
30      .1332   .1778   .2151   .2478   .2770   .3034   .3277   .3500 
35      .1161   .1557   .1893   .2189   .2457   .2702   .2927   .3137 
40      .1028   .1385   .1690   .1961   .2208   .2434   .2645   .2841 
45      .0923   .1248   .1526   .1776   .2004   .2215   .2412   .2596 
50      .0837   .1135   .1391   .1623   .1835   .2032   .2216   .2390 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

 
 

Upper percentage points of  .900 of theta(p,m,n), 
the largest eigenvalue of |B-theta(W+B)|=0,when s=4 

 
m 

 
                                           n             0          1          2          3         4           5          6          7 

 
1      .9394   .9545   .9636   .9696   .9739   .9772   .9797   .9817 
2      .8744   .9022   .9198   .9319   .9409   .9477   .9531   .9575 
3      .8095   .8473   .8723   .8901   .9036   .9140   .9224   .9293 
4      .7497   .7947   .8255   .8481   .8654   .8791   .8902   .8995 
5      .6961   .7460   .7812   .8075   .8280   .8445   .8580   .8694 
6      .6485   .7016   .7399   .7691   .7923   .8110   .8267   .8398 
7      .6063   .6614   .7019   .7333   .7585   .7792   .7965   .8113 
8      .5688   .6250   .6670   .7000   .7268   .7490   .7678   .7838 
9      .5354   .5920   .6350   .6692   .6972   .7206   .7405   .7577 
10      .5055   .5621   .6056   .6406   .6695   .6939   .7148   .7329 
11      .4786   .5348   .5786   .6142   .6437   .6688   .6904   .7093 
12      .4543   .5100   .5538   .5896   .6196   .6453   .6675   .6870 
13      .4323   .4873   .5309   .5668   .5971   .6232   .6459   .6658 
14      .4123   .4664   .5097   .5456   .5761   .6024   .6254   .6458 
15      .3940   .4472   .4901   .5258   .5564   .5829   .6062   .6268 
16      .3773   .4295   .4718   .5074   .5379   .5645   .5880   .6088 
17      .3619   .4131   .4549   .4901   .5206   .5472   .5707   .5918 
18      .3476   .3978   .4390   .4740   .5042   .5308   .5544   .5756 
19      .3345   .3837   .4243   .4588   .4889   .5154   .5390   .5602 
20      .3222   .3704   .4104   .4446   .4744   .5008   .5243   .5456 
22      .3003   .3465   .3852   .4185   .4478   .4738   .4972   .5184 
24      .2811   .3255   .3629   .3953   .4239   .4495   .4727   .4937 
26      .2642   .3068   .3430   .3745   .4024   .4276   .4504   .4712 
28      .2492   .2902   .3251   .3557   .3830   .4076   .4300   .4506 
30      .2358   .2752   .3090   .3387   .3653   .3894   .4114   .4316 
35      .2079   .2438   .2748   .3024   .3274   .3501   .3711   .3905 
40      .1858   .2187   .2474   .2732   .2965   .3180   .3379   .3564 
45      .1680   .1983   .2250   .2490   .2710   .2912   .3101   .3277 
50      .1533   .1814   .2063   .2288   .2494   .2686   .2865   .3033 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

 
 

Upper percentage points of  .900 of theta(p,m,n), 
the largest eigenvalue of |B-theta(W+B)|=0,when s=5 

 
m 
 

                                           n             0          1          2          3          4          5          6           7 
 

1      .9568   .9664   .9725   .9767   .9798   .9822   .9840   .9856 
2      .9062   .9249   .9373   .9462   .9529   .9580   .9622   .9656 
3      .8526   .8793   .8976   .9111   .9213   .9295   .9361   .9415 
4      .8008   .8338   .8571   .8746   .8882   .8991   .9080   .9155 
5      .7526   .7903   .8177   .8385   .8550   .8684   .8794   .8888 
6      .7085   .7497   .7802   .8038   .8226   .8381   .8511   .8621 
7      .6684   .7121   .7449   .7707   .7916   .8089   .8234   .8359 
8      .6321   .6774   .7120   .7395   .7620   .7808   .7968   .8105 
9      .5991   .6455   .6814   .7102   .7340   .7541   .7712   .7860 
10      .5691   .6161   .6529   .6828   .7076   .7287   .7468   .7626 
11      .5418   .5891   .6265   .6571   .6827   .7046   .7236   .7401 
12      .5168   .5641   .6019   .6330   .6593   .6819   .7015   .7187 
13      .4940   .5411   .5790   .6105   .6373   .6603   .6805   .6983 
14      .4730   .5198   .5577   .5894   .6165   .6400   .6605   .6788 
15      .4536   .5000   .5378   .5696   .5969   .6207   .6416   .6602 
16      .4358   .4816   .5192   .5510   .5785   .6024   .6236   .6425 
17      .4192   .4644   .5018   .5336   .5610   .5852   .6066   .6257 
18      .4038   .4484   .4855   .5171   .5446   .5688   .5903   .6096 
19      .3895   .4335   .4701   .5016   .5290   .5532   .5748   .5943 
20      .3762   .4194   .4557   .4869   .5142   .5384   .5601   .5797 
22      .3520   .3939   .4293   .4600   .4870   .5110   .5327   .5524 
24      .3307   .3712   .4057   .4357   .4623   .4862   .5078   .5274 
26      .3118   .3510   .3845   .4139   .4400   .4636   .4849   .5045 
28      .2950   .3328   .3654   .3941   .4197   .4429   .4640   .4834 
30      .2798   .3164   .3480   .3760   .4012   .4239   .4448   .4639 
35      .2479   .2816   .3111   .3373   .3611   .3829   .4029   .4214 
40      .2225   .2537   .2811   .3058   .3283   .3489   .3680   .3858 
45      .2018   .2308   .2564   .2796   .3008   .3204   .3387   .3558 
50      .1847   .2116   .2357   .2575   .2776   .2962   .3136   .3300 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

 
 

Upper percentage points of  .900 of theta(p,m,n), 
the largest eigenvalue of |B-theta(W+B)|=0,when s=6 

 
m 
 

                                            n            0          1          2          3          4          5          6          7 
 

1      .9677   .9741   .9784   .9815   .9838   .9856   .9870   .9882 
2      .9272   .9404   .9496   .9562   .9614   .9654   .9687   .9714 
3      .8824   .9020   .9159   .9263   .9344   .9408   .9461   .9506 
4      .8376   .8625   .8806   .8944   .9053   .9142   .9215   .9276 
5      .7946   .8238   .8455   .8623   .8757   .8867   .8959   .9037 
6      .7542   .7868   .8114   .8307   .8464   .8593   .8702   .8795 
7      .7168   .7519   .7788   .8003   .8178   .8324   .8448   .8555 
8      .6822   .7192   .7480   .7712   .7903   .8063   .8201   .8319 
9      .6503   .6888   .7190   .7435   .7640   .7812   .7961   .8090 
10      .6210   .6604   .6917   .7174   .7389   .7572   .7730   .7869 
11      .5939   .6340   .6661   .6927   .7151   .7342   .7509   .7655 
12      .5690   .6094   .6421   .6693   .6924   .7124   .7297   .7450 
13      .5459   .5865   .6196   .6474   .6710   .6915   .7095   .7254 
14      .5245   .5651   .5985   .6266   .6507   .6717   .6901   .7065 
15      .5046   .5452   .5787   .6070   .6315   .6528   .6717   .6885 
16      .4862   .5265   .5600   .5885   .6132   .6349   .6541   .6712 
17      .4689   .5090   .5424   .5710   .5959   .6178   .6372   .6547 
18      .4529   .4926   .5259   .5545   .5794   .6015   .6212   .6389 
19      .4378   .4771   .5103   .5388   .5638   .5860   .6058   .6237 
20      .4237   .4626   .4955   .5240   .5490   .5712   .5912   .6092 
22      .3980   .4359   .4683   .4965   .5214   .5437   .5637   .5820 
24      .3752   .4121   .4438   .4716   .4963   .5185   .5386   .5569 
26      .3548   .3907   .4218   .4491   .4735   .4955   .5155   .5338 
28      .3365   .3714   .4017   .4285   .4526   .4744   .4942   .5124 
30      .3199   .3539   .3835   .4097   .4334   .4549   .4746   .4927 
35      .2849   .3164   .3442   .3691   .3917   .4124   .4315   .4491 
40      .2567   .2861   .3122   .3358   .3573   .3771   .3954   .4125 
45      .2335   .2610   .2856   .3078   .3283   .3472   .3648   .3813 
50      .2142   .2400   .2631   .2842   .3036   .3217   .3386   .3544 

 


